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Following the COVID-19 pandemic which killed more than 7 million 

people worldwide, the mortality data relative to the years 2020 to 2022 is 

not directly usable for updating the calibration of stochastic mortality 

models or Solvency II internal model calibrations for mortality and 

longevity risks. 

In this paper, several approaches are presented to adjust COVID-19 

mortality data points prior to the calibration of mortality models. We then 

discuss their impact on mortality projections and shocks. 

Various national and statistical institutes have recorded the number of deaths attributable to COVID-19. These 

deaths correspond to the excess mortality caused by the pandemic, where excess mortality is the difference 

between the mortality that occurred and the expected mortality. These COVID-19 death data are highly 

dependent on how deaths are counted and correspond only to the direct effect of the pandemic on mortality. This 

direct effect may be overestimated in some countries, especially those with intensive testing and high 

sensitisation and/or incentives for COVID-19 diagnoses, or underestimated in other countries, especially in 

Africa.1 In addition to the COVID-19 direct effects, which are the deaths caused by the virus, there are also 

indirect effects such as the decrease in the number of deaths due to other viruses such as influenza, or the 

postponement of some surgical operations.  

Insurers and reinsurers have several options to update the calibration of their mortality and longevity models 

considering the COVID-19 experience. One option is to change the model calibration process, e.g., by 

introducing a weighting mechanism that allows less weight to be placed on years with unusual mortality 

experience. For instance, the 2022 CMI (Continuous Mortality Investigation) Core Model considers such a 

mechanism and puts a 0% weight on the 2020 and 2021 mortality data years, a 25% weight on the year 2022, 

and a 100% weight on all other years included in the calibration period.2 

Data adjustment options can also be used to determine a reference mortality level without the short-term effects 

of the COVID-19 pandemic, and this option will be explored in the rest of our paper. Note that the long-term 

effects of COVID-19 on the non-pandemic mortality and, in particular, long COVID are also not considered in our 

approach. The most robust and reliable approaches to quantify the excess mortality due to short-term risk factors 

such as COVID-19 are based on estimating weekly excess mortality, unlike those only based on official COVID-

19 death counts. They make it possible to exclude both positive and negative indirect effects of COVID-19, e.g., 

the postponements of surgical operations or the decrease in the number of seasonal influenza cases. This kind of 

adjustment is useful for different applications, such as avoiding double counting in internal models where it is 

taken into account in the pandemic module (along with its consequences), or to avoid distortions on forecasts for 

insured portfolio mortality since the models are not designed to capture such one-off/irregular effects. 
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In the next section, we present a methodology to adjust COVID-19 mortality data points prior to the calibration of 

mortality models. The data required and the modelling framework are described first, and then the theory behind 

the adjustment methods will be explained. The results for some countries for which Human Mortality Database 

(HMD) data are available are presented, followed by the results of a study of mortality rates in the Netherlands. 

Finally, we present alternative calibration strategies to model mortality considering the COVID-19 experience. 

Note that the models and projections do not take into account other effects on mortality, such as the evolution of 

neurodegenerative diseases or the opioid crisis, which are not the focus of the work presented here. These 

effects can be studied by modelling mortality by cause of death.3 

Methodology 
DATA 

The study is based on the use of the following mortality databases: 

 The Human Mortality Database:4 The HMD is a joint initiative of the Department of Demography at the 

University of California at Berkeley in the United States and the Max Planck Institute for Demographic 

Research in Rostock in Germany. It was created in 2000 with the objective of bringing together detailed 

population mortality data and to serve as a reference for anyone interested in human longevity. It contains 

data for almost 40 countries or areas in the form of periodic tables by year, age and sex, and also in the form 

of cohort tables. 

 The Short-Term Mortality Fluctuations (STMF) data series:5 This data resource has been created to 

provide data for scientific analysis of all-cause mortality fluctuations by week within each calendar year. The 

decision to add this new resource to the HMD was triggered by the COVID-19 pandemic. An additional 

motivation for this HMD extension was increasing importance of short-term or seasonal mortality fluctuations 

that are driven by temporary hazards such as influenza epidemics and temperature extremes, as well as 

man-made or natural disasters. The STMF provides open access to detailed data on mortality by week, sex 

and aggregated age group. The data series contains death counts, death rates and original input data used 

to produce these output indicators. Availability of weekly mortality data depends on the country. For the 

United States, for example, the data is available from the year 2015. 

 The demography of COVID-19 deaths database:6 It contains daily cumulative death counts attributable to 

COVID-19 broken down by sex, age, country and date of occurrence of the death, along with associated 

documentation, which includes the exact data sources. It also points out issues of quality and coverage of 

the data. 

 Statistics Netherlands: The Dutch mortality data is not available in the HMD for the year 2020, so we used 

mortality data from Statistics Netherlands, a Dutch governmental institution that gathers statistical 

information about the Netherlands. 

OPTIONS TO ADJUST COVID-19 DATA POINTS 

In this section, we present some adjustment options to determine a reference mortality level for the year 2020 

without the short-term effects of the COVID-19 pandemic. The objective of these methods is to obtain a reference 

level of mortality, called standardised death rates (SDRs), for a given index year 𝑦, where 𝑦 = 2020 in our case.  

The following adjustment methods are applied to the annual mortality rates: 

 Adjusting the data by removing the COVID-19 deaths: The COVID-19 deaths counted by the French 

Institute for Demographic Studies (INED) and available for several countries are removed from the total 

number of deaths in the year 2020. This method only enables mortality data to be corrected for the direct 

effects of COVID-19, without taking into consideration the indirect effects (negative and positive). 

 Replacing the mortality rates of the index year 2020 by the average of the annual mortality rates over the 

last previous 𝑁 years. Mortality rates have a generally decreasing trend over time that is not accounted for in 

this method. By averaging historical death rates, the method remains dependent on past fluctuations. 
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The following adjustment methods are applied to weekly mortality data.7 

 Week-specific averages: The weekly reference rate for week 𝑤 is the average of the mortality rates for the 

𝑁 years prior to the index year 𝑦 in week 𝑤.  

 Week-specific trends: The weekly reference rate for week 𝑤 is determined by performing a linear 

regression of the mortality rates of the 𝑁 previous years on week 𝑤.  

 Week-specific lower quartiles: The weekly reference rate for week 𝑤 is determined by averaging the 

quartile mortality rates of the 𝑁 previous years over the week 𝑤. Therefore, the week-specific lower quartiles 

for week 𝑖, 𝑥𝑖
𝑄1 are defined by: 

𝑥𝑖
𝑄1 =

∑ 𝑥𝑖𝑗𝑗∈𝐿𝑖

|𝐿𝑖|
 𝐿𝑖 ≔ {𝑗 ∈ 𝑃: 𝑥𝑖𝑗 ≤ 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒({𝑥𝑖𝑗 : 𝑗 ∈ 𝑃}, 0.25)} 

With:  

− 𝑥𝑖𝑗: The mortality rate for week 𝑖 in year 𝑗 

− 𝑃: Contains the 𝑁 previous years in the selected reference period 

 Yearly average-week: This denotes the expected level of mortality if every week had the same average 

level of mortality in the year. The yearly average-week 𝑥̅ is defined by: 

𝑥̅ =
∑ 𝑥𝑖̅𝑖∈𝑊

|𝑊|
 

Where: 

− 𝑥𝑖̅ equals the arithmetical mean over the years in the selected period and is given by 𝑥𝑖̅ =
∑ xi,j𝑗∈𝑃

|𝑃|
, where 

the set 𝑃 contains all years in the selected reference period and |𝑃| denotes the number of elements in 

the set 𝑃. 

− 𝑊 is the set of available weeks in the target year. 

Thus, 𝑥̅ denotes the expected level of mortality if every week had the same average level of mortality in 

the year. 

 Summer average-week: This measure 𝑥̅∗ is similar to the above-mentioned yearly average-week measure, 

i.e., 𝑥̅ but excludes from the calculation the winter weeks that tend to have higher mortality in general in 

comparison to summer weeks. For countries and regions in the Northern Hemisphere, winter season is 

defined as weeks from calendar week 1 to week 12 and from week 48 to week 52 included. For those 

situated in the Southern Hemisphere, winter season is defined as weeks from calendar week 22 to week 38 

included. Thus, generally, the value of 𝑥̅∗ is expected to be lower than 𝑥̅. The formula for the summer 

average-week is given by: 

𝑥̅∗ =
∑ 𝑥𝑖̅𝑖∈𝑊∗

|𝑊∗|
 

with 𝑊∗ denoting the set of non-winter weeks, i.e., available weeks between calendar weeks 13 and 47 for 

the Northern Hemisphere and weeks 1 to 21 and 39 to 52 in the Southern Hemisphere. 

In addition to the adjustment methods just presented, Shkolnikov et al. developed in their 2022 paper 

alternative methods to address the need to determine the excess mortality caused by COVID-19.8 They use 

an alternative retrospective baseline derived from the lowest weekly death rates achieved in previous years 

and a within-year baseline based on the average of the 13 lowest weekly death rates within the same year. 

These baselines express normative levels of the lowest feasible target death rates. The excess death rates 

calculated from these baselines are not distorted by past mortality peaks and do not treat non-pandemic 

winter mortality excesses as inevitable.  
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 The alternative retrospective baseline method: It is derived from the lowest weekly mortality rates 

achieved in the previous years. The baseline weekly death rate referring to past 𝑁 years 𝑆𝐷𝑅aretro 
𝐵 (𝑦, 𝑤) is 

defined as: 

𝑆𝐷𝑅aretro 
𝐵 (𝑦, 𝑤) = 𝑎̂𝑤 + β̂ ∙ 𝑦 

With: 

- 𝑤: The week number. 

- 𝑦: The index year. 

- 𝛽̂: An estimate of the slope of the linear regression of the annual 𝑆𝐷𝑅 on year 𝑡: 𝑆𝐷𝑅(𝑡) = β ⋅ 𝑡 + ε𝑡, 𝑦 −

𝑁 ≤ 𝑡 ≤ 𝑦 − 1. 

- 𝑎̂𝑤: Weekly effects defined as: 𝑎̂𝑤 = min
𝑡

2 (𝑆𝐷𝑅(𝑡 , 𝑤) − 𝛽̂ ∙ 𝑡) with min
𝑡

2 denoting the second-lowest 

𝑆𝐷𝑅(𝑡, 𝑤) value for week 𝑤 among years 𝑡 running from 𝑦 − 𝑁 to 𝑦 − 1. Note that the use of the second 

minimum is a commonly used approach to reduce the probability of outliers (David & Nagaraja, 2003).9  

The 𝑆𝐷𝑅aretro 
𝐵 (𝑦, 𝑤) indicates a target level of mortality referring to the lowest weekly death rates in the 

recent past, i.e., the past 𝑁 years. The baseline weekly death rates based on the previous minimal values 

are insensitive to past mortality peaks. This makes an important difference from more conventional metrics 

involving annual averaging of past weekly death rates. 

 The alternative within-year baseline method: It is based on weekly mortality rates in the index year. This 

method is independent of peaks in historical mortality rates. To calculate the baseline mortality, the method 

is based on the lowest weekly mortality rates in the index year 𝑦: 

𝑆𝐷𝑅𝑤𝑦
𝐵 (𝑦) =

1

13
∑ 𝑆

𝑤∈𝑄1

𝐷𝑅(𝑦, 𝑤) 

Where the set 𝑄1 includes the 13 weeks (a quarter of a year) that constitute the lower quartile of the 52 or 53 

𝑆𝐷𝑅(𝑦, 𝑤) values in year 𝑦. It determines a lower baseline of mortality in the index year 𝑦 and highlights the 

amount of mortality to be eliminated to reach the average level of the lowest and not necessarily consecutive 

13 mortality weeks.  

CALIBRATION METHODS AND MORTALITY PROJECTIONS 

The widely used Lee-Carter model is used to model mortality. The model is constructed as follows: 

𝑙𝑛(𝜇𝑥,𝑡) =  𝛼𝑥 +  𝛽𝑥𝜅𝑡 

With: 

 𝜇𝑥,𝑡: Mortality rate at age 𝑥 in year 𝑡 

 𝛼𝑥: Static age structure 

 𝛽𝑥: Sensitivity parameter at age 𝑥 in relation to the evolution over time 

 𝜅𝑡: Temporal evolution of mortality, modeled by an ARIMA process 

In order to quantify the impact of the 2020 COVID-19 mortality shock on the calibration of the Lee-Carter model, 

we calibrate the Lee-Carter model on real data up to 2019 in a first step, then up to the year 2020 in a second 

step. We then compare its parameters and mortality forecasts to different calibration strategies using adjusted 

mortality data. 
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Results 
IMPACT OF COVID-19 DISEASE ON MODELLING RESULTS  

The global COVID-19 pandemic has had an impact on mortality, which can be quantified as discussed above. 

Health situations varied from country to country depending on the spread of the virus and the health policy in 

each country. The statistics of the pandemic have shown that not all individuals in the population were equally 

affected by the virus. The elderly and those with pre-existing conditions were the most vulnerable, and deaths 

due to COVID-19 were generally concentrated in the 60+ age group. 

The following graphs show the mortality rates for 2019 and 2020 in the United States, France and Japan. These 

three countries have different mortality profiles because they have been impacted differently by the pandemic. 

Among these 3 countries, the United States is the country that has been the most impacted by COVID-19 in 

terms of 2020 mortality, followed by France and then Japan, where the mortality continued to decrease in 2020 

as shown by the Figure 3 below.  

FIGURE 1: MORTALITY RATES IN THE USA, TOTAL POPULATION 

 

FIGURE 2: MORTALITY RATES IN FRANCE, TOTAL POPULATION 
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FIGURE 3: MORTALITY RATES IN JAPAN, TOTAL POPULATION  

 

The Lee-Carter model κ𝑡 time series forecasts are based on a random walk with drift specified as follows: 

κ𝑡 = κ𝑡−1 + δ + 𝜎ϵ𝑡   

Where the ϵ𝑡 are independent and identically distributed (IID) standard normal realisations (centered, unit 

variance), δ is the so-called trend, and 𝜎 is the volatility parameter.  

The Lee-Carter model allows for the calculation of projected life expectancies at age 𝑥: 

𝑒𝑥(𝑡) = ∑ 𝑝𝑢,𝑥

110−𝑥

𝑢=1

(𝑡) 

With:  

𝑝𝑢,𝑥(𝑡) = ∏[1 − 𝑚(𝑥 + 𝑘, 𝑡 + 𝑘)]

𝑢−1

𝑘=0

 

Each Lee-Carter model is calibrated on mortality data up to 2019 in a first step, then up to the year 2020 (without 

using any data adjustment method) in a second step. 

FIGURE 4: TREND RELATIVE DIFFERENCES BETWEEN THE TWO STEPS 
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FIGURE 5: VOLATILITY RELATIVE DIFFERENCES BETWEEN THE TWO STEPS 

 

The graphs show the relative increase in trend δ and volatility 𝜎 following the inclusion of the 2020 raw mortality 

data point in the calibration data. The countries are ordered according to the relative deviation observed, which is 

consistent with the number of COVID-19 deaths recorded in each country. The larger the number of COVID-19 

deaths, the greater the trend and volatility are impacting the mortality projections.  

The projected life expectancy of the total population in 2030 at age 60 with the 2019 and 2020 Lee-Carter models 

is compared measuring the impact of incorporating the year 2020 into the model. First, the countries show large 

differences in pre-pandemic life expectancies. In particular, Japan has the longest average life expectancy 

among G7 countries, primarily due to remarkably low mortality rates from ischemic heart disease and cancer 

(particularly breast and prostate).10 Adding the 2020 mortality data in the calibration period of the Lee-Carter 

model results in a decrease in the resulting life expectancy of almost two years for the United States, while there 

is very little influence on that of Japan. Indeed, despite early exposure, its dense and aging population, and little 

social distancing measures, Japan reported low infection and low death from COVID-19.  

FIGURE 6: LIFE EXPECTANCIES RESULTING FROM THE LEE-CARTER MODEL 

Country Age 2019 2020 

USA 47 35.78 33.53 

67 17.71 16.34 

87 4.14 3.97 

France 47 39.43 38.49 

67 20.23 19.56 

87 4.58 4.43 

Japan 47 40.69 40.80 

67 20.85 20.92 

87 4.83 4.85 

The Netherlands 47 37.75 37.00 

67 18.34 17.84 

87 3.97 3.86 
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EXCESS MORTALITY ATTRIBUTED TO COVID-19 

The adjustment methods presented previously are applied over the period 2005 to 2020 when weekly and annual 

data are available. The excess age-standardised death rates (ESDR) are the differences between the observed 

age-standardised death rates and the baseline age-standardised death rates determined by the adjustment method: 

𝐸𝑆𝐷𝑅(𝑦, 𝑤) = 𝑆𝐷𝑅(𝑦, 𝑤) − 𝑆𝐷𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑦, 𝑤) 

The annual baseline and observed SDRs, as well as the annual ESDRs, are obtained by averaging the weekly 

SDRs and ESDRs within respective years. Such a simple calculation is correct because STMF uses the same 

population exposure for every week within each calendar year. 

Note that although the year 2020 stands out due to the increase in mortality during the COVID-19 pandemic, high 

excess mortality is seen also in earlier years, as shown by the Figure 7 in the case of the alternative within-year 

adjustment method. 

FIGURE 7: EXCESS MORTALITY PER 100,000 INHABITANTS DETERMINED WITH THE ALTERNATIVE WITHIN-YEAR METHOD 

 

FIGURE 8: EXCESS MORTALITY PER 100,000 INHABITANTS IN 2020 USING THE ADJUSTMENT METHODS 

 USA France 

Official recorded COVID-19 deaths 107 96 

Average historical annual mortality 131 132 

Week-specific average 161 90 

Week-specific lower quartiles 178 124 

Week-specific trends 106 130 

Alternative within-year 134 193 

Alternative retrospective 205 125 
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For the USA and France, most of the adjustment methods lead to a higher excess mortality in 2020 than the 

official recorded COVID-19 deaths. This result was expected as these methods produce a total excess mortality 

that also includes the indirect effects of COVID-19. Note that the results from these methods are not 

homogeneous. In particular, the week-specific lower quartiles, alternative within-year and alternative 

retrospective methods lead to higher excess mortality results than the average historical annual mortality, week-

specific average and week-specific trends methods.  

MORTALITY MODEL CALIBRATION 

In the following, the mortality models are calibrated with data up to the year 2020. We then analyse the impact of 

using adjusted mortality data for the year 2020 on the calibration of mortality models, in terms of projected 

mortality rates and life expectancies. 

The figures below show the projection of mortality rates at age 70 in the United States with and without adjusted 

mortality data. The adjusted mortality rates in 2020 are consistent with historical mortality rates. Besides, the 

width of the confidence intervals of the Lee-Carter mortality projections is reduced when using adjusted data, due 

to a lower volatility 𝝈. 

FIGURE 9: WITHOUT ADJUSTED MORTALITY DATA 

 

FIGURE 10: WITH ADJUSTED MORTALITY DATA: WEEK-SPECIFIC LOWER QUARTILES METHOD  
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FIGURE 11: WITH ADJUSTED MORTALITY DATA: ALTERNATIVE WITHIN-YEAR METHOD 

 

FIGURE 12: WITH ADJUSTED MORTALITY DATA: REMOVING THE OFFICIAL RECORDED 2020 COVID-19 DEATHS 

 

Life expectancies 

The inclusion of the unadjusted mortality data for the year 2020 in the calibration period of the Lee-Carter model 

results in a significant reduction in life expectancies. Figure 13 below presents the results when considering 

adjusted mortality data for the United States, France and the Netherlands for three ages representing age groups 

impacted differently by the pandemic. The week-specific lower quartiles and alternative within-year methods are 

the ones that lead to the highest life expectancies across all countries. 
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FIGURE 13: LIFE EXPECTANCIES OBTAINED USING THE LEE-CARTER MODEL CALIBRATED WITH ADJUSTED MORTALITY DATA 

Country Age 
2020 week-specific  

lower quartiles 

2020 alternative  

within-year 

2020 Average historical 

 annual mortality 

USA 47 35.78 34.55 35.47 

67 17.72 16.96 17.52 

87 4.16 4.05 4.12 

France 47 38.49 40.10 38.93 

67 19.56 20.71 19.88 

87 4.43 4.70 4.50 

The Netherlands 47 38.33 38.86 37.55 

67 18.70 19.07 18.20 

87 4.00 4.09 3.92 

MORTALITY SHOCKS  

Methodology 

The method for calculating mortality shocks is based on a method which follows that used by the European 

Insurance and Occupational Pensions Authority (EIOPA) and is divided into three main steps.11 

Step 1: Projection of the future mortality rates at a one-year horizon. The number of simulations is fixed at 5,000, 

and the future mortality rates are projected with the Lee-Carter model. 

Step 2: Life expectancies are calculated for each attained age given the survival function determined by the 

simulated mortality tables. The 0.5th percentile realisations of the cohort life expectancies are then computed.  

Because mortality sensitivity can be captured by changes in life expectancies, such optimal stresses can be 

determined by analysing their impact on life expectancies. For each age, the optimal mortality shock is defined as 

the stress which matches the shocked central life expectancy with the 0.5th percentile of the not shocked life 

expectancy. The age-dependent shocked life expectancy is formulated as: 

𝑒𝑥
ℎ(𝑡) =

1

2
+ ∑ ∏(1 − (1 + ℎ)𝑞𝑥+𝑠(𝑡 + 𝑠))

𝑘−1

𝑠=0

+ ∞

𝑘=1

 

We propose to determine the mortality shocks with the Lee-Carter model calibrated on the historical mortality 

rates including the adjustment of the data for the year 2020. We then compare the impact of the COVID-19 data 

adjustment on the mortality shocks. 

Step 3: For each age, the optimal mortality shocks are defined as the shocks that minimise the distance between 

the life expectancy in the central scenario and the quantile realisation.  

ℎinf(𝑥) = argmin
ℎ∈]−1,1[

(𝑒𝑥
ℎ(𝑡) − 𝑒𝑥

0.5%(𝑡))
2

  

Caveat 

Note that the COVID-19 event brings additional uncertainty about future non-pandemic mortality due to the long-

term effects of COVID-19, such as long COVID. As this is not considered in our approach, it would be necessary 

to add an extra buffer to the mortality shock obtained in order to take this uncertainty into account. Note that the 

methodology to be used for the determination of this additional adjustment is not the scope of this article. 
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Results  

As expected, considering adjusted mortality data leads to lower mortality shocks, more in line with those obtained 

by excluding the year 2020 in the calibration period. Note that the results vary according to the adjusting method. 

Also note that by using adjusted mortality data, we exclude in our mortality assumptions the direct short-term 

effects of COVID-19. 

The obtained mortality shocks for France and the United States are presented below, as well as in the figures 

showing the average mortality shocks by age group. 

FIGURE 14: MORTALITY SHOCKS – FRANCE  

 

FIGURE 15: MORTALITY SHOCKS – USA 

 

It can be observed that the mortality shocks vary depending on which data adjustment method is considered. For 

the United States, calibrating the Lee-Carter model using unadjusted 2020 mortality data leads to much higher 

mortality shock values than calibrating it using mortality data up to 2019. Higher shocks are also obtained when 

adjusting the 2020 mortality data with the alternative within-year adjustment method. However, applying the 

historical average or the week-specific lower quartiles adjustment methods leads to much lower mortality shocks.  

Overall, these adjustment methods lead to mortality shocks closer to those obtained by excluding the 2020 year 

in the calibration period of the Lee-Carter model. 
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FIGURE 16: AVERAGE MORTALITY SHOCKS BY AGE GROUP 

United States 

Last year in the 

calibration period Adjustment method 18-35 36-55 56-80 80-94 

2019 No adjustment 2.62 2.88 2.80 1.30 

2020 No adjustment 6.90 7.59 7.39 3.36 

2020 Historical average 2.64 2.90 2.83 1.34 

2020 Alternative within-year 4.31 4.75 4.63 2.13 

2020 Week-specific lower quartiles 2.47 2.72 2.66 1.28 

France 

Last year in the 

calibration period Adjustment method 18-35 36-55 56-80 80-94 

2019 No adjustment 5.97 5.90 6.16 4.57 

2020 No adjustment 6.77 6.70 6.97 5.13 

2020 Historical average 5.94 5.88 6.13 4.55 

2020 Alternative within-year 6.32 6.25 6.54 4.95 

2020 Week-specific lower quartiles 5.59 5.53 5.77 4.32 

The Netherlands 

Last year in the 

calibration period Adjustment method 18-35 36-55 56-80 80-94 

2019 No adjustment 4.24 4.34 3.98 1.88 

2020 No adjustment 4.85 4.96 4.52 2.00 

2020 Historical average 4.10 4.21 3.86 1.65 

2020 Alternative within-year 6.13 6.33 5.85 2.81 

2020 Week-specific lower quartiles 4.59 4.69 4.29 1.90 

For Japan, calibrating the Lee-Carter model using unadjusted 2020 mortality data gives slightly lower mortality 

shock values than calibrating it using mortality data up to 2019. This is due to the fact that the excess mortality 

due to COVID-19 in 2020 is very low and mortality continued to improve in Japan in 2020. This is why the 2020 

adjustment for countries with a similar profile does not seem necessary. 

FIGURE 17: MORTALITY SHOCKS - JAPAN 
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Qualitative comparison with AG2022 
GENERAL DESCRIPTION OF AG2022 

The Royal Dutch Actuarial Association (AG) has also taken COVID-19 into account, using a slightly different 

approach, in their latest Projection Life Table AG2022, which estimates expected developments in survival rates 

and life expectancy in the Netherlands.12 The aim of this section is to describe the AG's approach, and to 

compare it with the approach that has been previously described. 

The AG model is based on mortality rates in European countries with comparable levels of prosperity. It is 

assumed that the Dutch mortality rates will follow the European mortality rates in the long term but may deviate 

from them in the short term. Average gross domestic product (GDP) is used as a criterion for the country 

selection, which has led to the selection of, in addition to the Netherlands, Belgium, Denmark, Finland, France, 

Germany, Ireland, Iceland, Luxembourg, Norway, Sweden, the United Kingdom and Switzerland. 

The model used to project mortality rates is based on the stochastic Li-Lee multi-population model, which 

consists of two parts: pre-COVID mortality rates and excess mortality rates for 2020 and 2021. The first part of 

the model provides estimated pre-COVID mortality rates for Europe and the Netherlands, based on maximum 

likelihood estimation for ages 𝑥 up to 90, years 𝑡=1983, …, 2019, and per gender 𝑔:  

𝑙𝑛 (𝜇𝑥
𝑔,𝑝𝑟𝑒−𝑐𝑜𝑣,𝐸𝑈(𝑡)) =  𝐴𝑥

𝑔 + 𝐵𝑥
𝑔  𝐾𝑡

𝑔       
 

(1) 

𝑙𝑛 (𝜇𝑥
𝑔,𝑝𝑟𝑒−𝑐𝑜𝑣,𝑁𝐿(𝑡)) =  𝐴𝑥

𝑔 + 𝐵𝑥
𝑔 𝐾𝑡

𝑔 +   𝛼𝑥
𝑔 + 𝛽𝑥

𝑔  𝜅𝑡
𝑔   

 

(2) 

With: 

 𝜇𝑥
𝑔,𝑝𝑟𝑒−𝑐𝑜𝑣,𝐸𝑈: European pre-covid mortality rate at age 𝑥 in year 𝑡 for gender 𝑔 

 𝐴𝑥
𝑔:  European static age structure for gender 𝑔  

 𝐵𝑥
𝑔:  European sensitivity parameter at age 𝑥 for gender 𝑔 in relation to the evolution over time 

 𝐾𝑡
𝑔:  European time evolution of mortality for gender 𝑔 

 𝛼𝑥
𝑔, 𝛽𝑥

𝑔 , 𝜅𝑡
𝑔: Dutch deviation compared to the European variables 𝐴𝑥

𝑔, 𝐵𝑥
𝑔 , 𝐾𝑡

𝑔 

The model then projects time series for 𝑡 ≥  2020 by fitting a random walk with drift and a first-order 

autoregressive process with one constant to the extended data set: 

𝐾𝑡
𝑔 =  𝐾𝑡−1

𝑔 + 𝜃𝑔 + 𝜖𝑡
𝑔      

 

(3) 

𝜅𝑡
𝑔   =  𝑎𝑔𝜅𝑡−1

𝑔   + 𝑐𝑔 +  𝛿𝑡
𝑔      (4) 

(𝜖𝑡
𝑀, 𝜖𝑡

𝐹, 𝛿𝑡
𝑀, 𝛿𝑡

𝐹)~𝑖. 𝑖. 𝑑. 𝑁(𝟎, 𝑪), (5) 

where 𝜃𝑔 is the estimated drift of the time effects of Europe, 𝑐𝑔 is the estimated constant term of the Dutch 

deviation, 𝑎𝑔 is the estimated AR(1) autoregressive term of the time effects of the Dutch deviation, 𝜖𝑡
𝑔 and 𝛿𝑡

𝑔
 

are error terms. 

The model is calibrated using data up to 2019, and it is only used for ages up to 90 years due to limited 

observations for higher ages. For ages above 90 years, a closure mechanism is used.  

Unlike in the previous Projection Life Table AG2020, excess mortality caused by COVID-19 is taken into account 

in AG2022. However, only Dutch data is used for excess mortality rates in 2020 and 2021 due to varying COVID-

19 approaches across Europe and limited age-specific data at the European level. To estimate the COVID-19 

effect, weekly Statistics Netherlands mortality data (formerly Dutch Central Agency for Statistics (CBS))  from 

2020 and 2021, categorised by age and gender, are used. The excess mortality effect is determined by adjusting 

for seasonality and combining a time effect (𝔛𝑡
𝑔) with an age effect (𝔅̃𝑥

𝑔
), resulting in a surcharge on estimated 

mortality. Mortality probability projections for ages under 55 are not influenced by COVID-19 (i.e., 𝔅̃𝑥
𝑔

= 0 

𝑓𝑜𝑟 𝑥 < 55), as limited excess mortality was visible for these ages in the data. 
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The weekly data for 2020 and 2021 are aggregated to a single value capturing the effects for the whole year (i.e., 

𝔛2020
𝑔 and  𝔛2021

𝑔), which are determined such that the survival probabilities over the full year equal the product 

of survival probabilities per week. The final annual forecast is made for ages 𝑥 from 0 to 90, with normalisation 

done by ensuring that the sum of the resulting annual age effects for ages above 55 is equal to 1 

(∑ 𝔅̃𝑥
𝑔

= 190
𝑥=55 ). This leads to equation (6), in which equation (2) is extended by the inclusion of excess mortality 

through the time and age effect (i.e., 𝔛𝑡
𝑔 and 𝔅̃𝑥

𝑔
). 

𝑙𝑛 (𝜇𝑥
𝑔,𝑁𝐿(𝑡)) =  𝐴𝑥

𝑔 + 𝐵𝑥
𝑔 𝐾𝑡

𝑔 +  𝛼𝑥
𝑔 + 𝛽𝑥

𝑔 𝜅𝑡
𝑔  + 𝔅̃𝑥

𝑔
𝔛𝑡

𝑔 
 

(6) 

Several potential future scenarios were considered by the AG. They decided to select a scenario in which the 

COVID-19 impact on survival rates diminishes over time, with little to no lasting effect on life expectancy. The 

model assumes that COVID-19's impact on life expectancy disappears after several years, returning to pre-

pandemic levels, with a half-life of one year used to determine the remaining impact: 

𝔛𝑡
𝑔 = 𝔛2021

𝑔𝜂𝑡−2021  with 𝑡 ≥ 2022 and 𝜂 =
1

2
. 

 

(7) 

DIFFERENCES AND SIMILARITIES 

AG2022 and the modelling in this paper differ in their approach to modelling, but they also share some similarities. 

The methods differ in the following ways: 

 AG2022 takes into account the European mortality trend for the long term (based on data up to 2019) using 

the Li-Lee model, while this paper does not consider multi-population mortality experience as the Lee-Carter 

model is used.  

 This paper uses weekly data from 2020 by five- or 10-year age groups from INED, while AG2022 uses more 

detailed weekly data available per age from the CBS. 

 AG2022 uses a closure measure for ages above 90 years due to limited observations, whereas this paper 

uses the available data. 

 AG2022 incorporates a temporary COVID-19 effect for ages 55 and above based on excess mortality in 

2020 and 2021, while this paper acknowledges excess mortality is concentrated in the 60+ age group but 

does not restrict this in the modelling. 

 AG2022 assumes that COVID-19's impact on life expectancy disappears after several years (returning to 

pre-pandemic levels), with a half-life of one year, while the data adjustment methodologies presented in this 

paper assume that COVID-19 should not impact future mortality at all. 

 AG2022 aggregates weekly data for 2020 and 2021 to a single value capturing the effects for the whole 

year, whereas this paper considers different methods on weekly rates. 

On the other hand, the methods share the following similarities: 

 Both methods assume the same scenario for the best estimate mortality rates, in which the pandemic does 

not impact long-term mortality rates. 

 Both methods use weekly data for the years 2020 and 2021 to determine excess mortality. 

 Both methods make an adjustment for seasonality in the weekly data. 

EXAMPLES OF IMPACT 

We won’t provide a full quantitative comparison of the different methods here, though we would like to provide a 

general idea of the impact that using a different methodology for incorporating COVID-19-related effects might 

have on the life expectancy numbers. 

For example, Figure 18 below shows the life expectancy for 65-year-olds at different start years, for a number of 

methodologies. Especially in the female case, we can observe that the AG2022 model shows a substantial 

increase in life expectancy a few years after the pandemic. A Lee-Carter (LC) model fitted on the 2020 data 

shows a similar starting point, though with a slower increase. The latter is also true for the model in which a data 

adjustment has been applied, albeit with a higher starting point.  
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FIGURE 18: COMPARISON OF LIFE EXPECTANCY FOR 65-YEAR-OLDS USING DIFFERENT METHODOLOGIES AT  

VARIOUS STARTING YEARS 

 
MALE 

 
Realisation AG2020 AG2022 LC 2019 

LC 2020 no 

correction 

2020 

historical 

average 

2020 Week-

specific lower 

quartiles 

2020 

Alternative 

within-year 

2019 18.8 18.7 18.7 19.0 18.4 18.7 19.4 19.9 

2020 18.1 18.8 18.1 19.1 18.5 18.8 19.5 20.0 

2021 18.2 18.9 18.2 19.2 18.6 18.9 19.6 20.1 

2022 

 

19.0 18.7 19.3 18.7 19.0 19.7 20.2 

2023 

 

19.1 18.9 19.5 18.8 19.1 19.8 20.3 

2024 

 

19.2 19.1 19.6 18.9 19.2 19.9 20.4 

2025 

 

19.3 19.3 19.7 19.0 19.3 20.1 20.6 

  

FEMALE 

 
Realisation AG2020 AG2022 LC 2019 

LC 2020 no 

correction 

2020 

historical 

average 

2020 Week-

specific lower 

quartiles 

2020 

Alternative 

within-year 

2019 21.3 21.3 21.3 21.0 20.6 21.0 21.7 22.0 

2020 20.7 21.4 20.8 21.1 20.7 21.1 21.8 22.1 

2021 20.8 21.5 20.8 21.2 20.7 21.1 21.8 22.2 

2022 

 

21.6 21.3 21.2 20.8 21.2 21.9 22.3 

2023 

 

21.7 21.6 21.3 20.8 21.2 22.0 22.4 

2024 

 

21.8 21.7 21.3 20.9 21.3 22.0 22.4 

2025 

 

21.9 21.9 21.4 21.0 21.4 22.1 22.5 

Alternative methods  
Other calibration strategies are possible in order to take into account a pandemic experience when modelling 

mortality, such as: 

 Performing an outlier analysis on the fitted period effects (𝜿𝒕) of the Lee-Carter model in order to identify 

extreme mortality changes and remove their influence on the model. Lee and Carter followed this idea in 

1992, but they only identified the 1918 Spanish flu as an outlier and then applied an intervention model to 

remove its effect.13 Li and Chan proposed in 2007 a more systematic approach, applying established 

techniques from time series outlier analysis.14 Such an approach is appropriate if the aim of the modeller is 

to predict future non-pandemic mortality based on past mortality data. That is why it is reasonable to remove 

all pandemic events from the calibration data of the Lee-Carter model. 

 Including a jump process in the time series model for the Lee-Carter period effects. Jumps can be transitory 

or permanent, and their severity can be assumed to follow different distributions (e.g., normal, truncated 

normal, Pareto, beta). For example, Chen and Cox proposed in 2009 an extension of the Lee-Carter period 

effect model with transitory jumps via the following relationship: 𝜿𝒕+𝟏 = 𝜿𝒕 + 𝝁 + 𝒆𝒕+𝟏 + 𝑵𝒕+𝟏𝒀𝒕+𝟏 − 𝑵𝒕𝒀𝒕 

where the jump indicator 𝑵𝒕 follows a Bernoulli distribution and the jump severity 𝒀𝒕 is normally distributed.15 

Such an approach is appropriate if the aim of the modeler is to predict both future non-pandemic and 

pandemic mortality based on past mortality data. There are alternative methods, as well.16  

 Introducing weights on mortality data, as it is the case for the latest version of the CMI (Continuous Mortality 

Investigation) model. Unlike the previous versions of the CMI model which considered 0% weight to the 

2020/2021 mortality data, the CMI proposes to set a 25% weight for mortality data in 2022. Note that in the 

coming years, the CMI plans to steadily increase the weight on mortality data for future years as a clearer 

indication of mortality trends emerges. Note that such an approach allows the modellers the flexibility to 

modify mortality projections tailored to their own views and purpose. 
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Conclusion 
In order to project future mortality via stochastic mortality models by avoiding distortions caused by the COVID-19 

experience, mortality data adjustment methods can be used. Using indirect approaches instead of direct ones 

using the official COVID-19 death counts makes it possible to exclude indirect effects of COVID-19. These 

methods are particularly relevant within economic capital models (e.g., to avoid double counting with pandemic 

risk measured apart), as well as to derive long-term mortality trends without instabilities from a one-off pandemic 

experience, combined with the context of mitigation measures and economic crisis. 

In the case of an adjustment of the 2020 calibration mortality data for a country where the COVID-19 excess 

deaths is significant, the mortality projections and the resulting mortality shocks are: 

 Significantly lower than those obtained by calibrating the model on non-adjusted mortality data 

 More in line with what would have been obtained by calibrating the models using mortality data up to 2019 

In addition, note that HMD 2021 data is now available for more and more countries. As 2021 is also affected by 

excess mortality due to COVID-19, it is also necessary to adjust this year of data. We could therefore apply the 

same adjustment methods for 2021, using adjusted 2020 data in the case of adjustment methods based on past 

mortality data. Each of the presented adjustment methodologies should be checked separately for 2021 in order 

to choose the ones that suit the best. 

Also note that other data adjustment methods are possible. For instance, in France, observed deaths in 2022 

significantly exceeded those expected in the absence of a COVID-19 pandemic or other unusual events such as 

flu episodes or extreme heat.17 Thus, it would be interesting to consider mortality scenarios for the years 2020 

and beyond assuming that COVID-19 had never occurred, taking into consideration all the other particularities of 

these years affecting mortality, e.g., influenza episodes or extreme heat. 

Finally, other methods can be used to take into account COVID-19 experience when calibrating mortality models: 

 Using refined versions of mortality models as the extension of the Lee-Carter period effect model with 

transitory jumps proposed by Chen and Cox in 200918 

 Introducing weights on mortality calibration data as it is the case for the latest version of the CMI model 
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